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The theory developed in {1] is applied to a certain class of ordinary differential
equations in a Hilbert space, Sufficient conditions are indicated for the appear-
ance of auto-oscillations on the passage of a certain parameter through its crit-
ical value (existence of that value is established by the theory of normal opera-
tors), A nonlinear parabolic equation is investigated as an example,

The auto-oscillating modes are given for the general equation of [1] in the
form of series in fractional powers of the supercritical parameter §, and in the
form of series in powers of the amplitude coefficient accompanying the neutral
perturbation in the Fourier expansion, The perturbation theory is used to study
the stability of the auto-oscillations, The terminology and the basic notation
of [1] are all retained,

1, A class of equations with auto-oscillating solutions, Letus
consider the ordinary differential equation

~dvidt + Av — ABr = K (v, }) (1.1)

in the Hilbert space H, under the following assumptions:

1) The operator 4 is self-conjugate, positive definite and coercive (maps D ,on all
H in one-to-one correspondence), The operator A~ is completely continuous,

2) The operator B is linear, with a domain qf definition dense in H.and is subordinate
to the operator A'* in the sense that Dg_ D D v, Dp; > D s, and the operators
A-':B, and A~":B; are bounded (B, and B, denote the real and imaginary part of the
operator B).

3) The real part B, of B is not zero,

4) The operator B; commutes with A~'B, and the operator B, commutes with A™*

B, (A1B)u = (A'B,) B
B, A= A"Bu (u e D yy) (1.2)

By W, we denote the space of vector functions v (f) whose values belong to H defi-
ned for ¢ &= [0, 2n], continuous and having the following finite norm

uvuwp—:fS K

5) The nonlinear operator K acts continuously from W, into L, ((0, 2x), H)and is
analytic over the set (v, A) near the point (U, A,) of the space H X R for any %,.
Moreover it is assumed that the Frechet derivative X, (0, A) = 0 for all A.

g
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We shall assume that an operation of complex conjugation is defined on the space
H : v — u* and the operators A, B and X are real; (Au)* = Au*etc,
Let us consider the following eigenvalue problem

A9y —ABgy =0 (1.3)
Inverting the operator A we arrive at the equation
9o = Me,, T = A7B, (1.4)

The operator I is self-conjugate and completely continuous in the energy space H; of
the operator 4. Indeed, forany u, v = H, we have

(Tu, v)g, = (A#A1B,u, A'w)y = (B, v)g = (u, Bw)g = (u, To)u, (1.5)

Conditions (1) and (3) imply that ' == 0. By the Hilbert-Schmidt theorem there exists
at least one nonzero real eigenvalue A, of the operator 7. Conditions (1) and (2) imply
that any eigenvector ¢ of T satisfies {1, 3) (in particular ¢ & D 4). Condition (4) imp-
lies that a (finite-dimensional) characteristic subspace H, of the operator 7' correspon-
ding to the eigenvector A, is invariant with respect to the operator B;.

Operator B; is symmetric on H,, Let us assume that it is nondegenerate on H, and
has dim H, eigenvectors, Let ¢ be one of these vectors, Then

— ABi = 0,9 (1.6

where ©, is a real number different from zero, Applying the operation of complex
conjugation to the above equation we find that ¢* is also an eigenvector of B, with a
corresponding eigenvalue @, / Ag-

Thus H4 is an even-dimensional subspace and the spectrum of the operator B; on
this space is symmetrical with respect to zero, Obviously, @ is 2n eigenvector of the
operator 4 — A\B Ag — hBo = i0yg (1.7

Theorem 1,1, Letthe conditions (1) to (5) hold, A, be a double eigenvalue of
the operator I and the operator B, be nondegenerate on the characteristic subspace
H |, corresponding to A,. Then A, is the branch point of a cycle for (1,1),

Proof, It issufficient to verify that condition (3, 86) of Theorem 3,1 of [1] holds,
We note that the operator L == J — A4"'B — in4~': H, — H, is normal for any real
4 and . Indeed, simple calculations show that its real /.. and imaginary [; parts have
the form Ly=1—\A-B,, L= — M A-1B; — 9 A1 (1.8)

Condition (4) implies that L, and L; commute, The normality of L implies that
ker L = kerl *. Taking into account the conditions (1) and (2) we can now easily deduce

that ¢ is the only eigenvector of the operator 4 — A,B corresponding to the eigenvalue
iy

AQ — hoB¥Q = — i@ (1.9
Taking into account (1, 7) we now obtain
Re (By, @)y = _;.é’_. [{cp[@h>0 (1.4

We note that Theorem 1,1 can be easily generalized, It can e, g, be assumed that
the operator 4 has an imaginary component and that the operator B is subordinate to
A% (0 << o0 << 1), Naturally, in this case the conditions (4) and (5) are appropriately
altered,

The fact that Eqs, (1, 3) or (1,4) are invariant under a certain group of transformations
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(e. g. relative to some representation of a group of peripheral rotations in an operator
ring) may be the reason for the existence of a double eigenvalue, This occurs in the
following example,

Example, Let r and O be polar coordinates on a plane and Q a ring, Q =
{rno):0<n<r< 7‘2} Consider the parabolic equation

—}—7\,<u+a )+u3 (1.11)

with real parameters A, o == (). We shall seek its solutions satisfying the boundary con-
ditions Y R (1.12)

in a cylinder — oo <t < o0; (r, ) = Q.
The system (1,11) and (1,12) can be treated as an ordinary differential equation in
a Hilbert space H = L, () , and we must assume

Au = —Au, Bu=u-+adu/d0, Ku=ud (1.13)

The domain of definition of the operator A is a functional subspace of Wi (Q), satis-
fying the condition (1,12), and ]) 5 is the energy space /; = D (A4"s) of the operator
A.We further have B,u = uand B,y =i adu / 88, and the conditions (1) - (5) can
now be easily verified,

Let us consider the eigenvalue problem

— Au = hu, U|rr,rn=20 (1.14)
Using the Fourier expansions in § we confirm, that the eigenfunctions are
Umn = eXp im0y, (1) (m=0,F1,...;s n=1,2,..)) (1.15)

Here Y, denotes the eigenfunction of the Sturm-Liouville problem corresponding to
the 7n-th (in magnitude) elgenvalue )an

m‘l}mn = (drz +—= r g‘) 1pmn = }"mn’lpmn (116)
Ymn (1) = 'lpmn (rg) = 0

Under the boundary conditions (1,16) the differential operator L, is positive definite
in the space L, with the weight 7 on [ry, 7] . It is well known that all its eigenvalues
Amn are simple, Moreover, L, increases strictly with m,therefore by the minimax prin-
cipleA,, also increases strictly with m.

We shall show that the numbers A, (m = 0,1, ...; n = 1, 2, .. .)are all dis-
tinct provided that the quantity ¢ = (r, — ry) / ry does not assume values which belong
to a certain enumerable set,

Let us select some fixed natural numbers m, n,p, ¢ and verify, for which values of
e the equation A, — Apq == O holds, The substitution 7 = 1y (1 -+ ex)yields (1,16)
in the form

[ d? ery d méri2e?

ot T 7 — T ) Ynn = Mmnri®e™mn, Yrun |, =0 (147)

d

The perturbation theory implies that the eigenvalue Munrq%€® is analytic in & and
tends to n?n? at ¢ — O , From this we deduce that A, — Apgis analytic in & and
not identically zero when n == ¢.But the latter is also true when n = gand m == p
since Apq >> A,q When m > p.Thus the set 2 ,,,pq of those € for which Ay, = Aygs
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is at most enumerable, The set & which is a union of all X ,,,pq , is also enumerable,
ife & Z,then Ay, (r = 1,2, ...) denote the simple, and A,,, (m > 0) the double
eigenvalues of the operator A , The eigenvalues -ma of the operator B; lie on the
characteristic subspace of A, corresponding to A,,, (m > 0), consequently B; is non-
degenerate, Applying Theorem 1,1, we now arrive at the following result,

Let ¢ = 3.Then a sequence of critical values A, (m, n = 1, 2, . . .) of the par-
ameter A exists, which are the branch points of the cycle, It can easily be shown that
the passage of the parameter A through the values Aq, (n = 1, 2, ...) is accomp-

anied by the branching of the stationary solutions of the system (1,11) and (1,12) from
Zero,

We note that the auto-oscillating solution of the Navier-Stokes equations investigated
in [2, 3], can also be included in the scheme described above,

2, Representation of a cycle {n terms of power series, In[1]the
Liapunov-Schmidt method was used to study a periodic, auto-oscillating mode of mot-
ion of a viscous fluid which occurs when the Reynolds number (or some other parameter
y) passes through its critical value, We also consider a more general problem of appe-
arance of a cycle for an ordinary differential equation in the Banach space X

odv/dt + Av = K (v, 9) 2.1
where  is the unknown cyclic frequency, ¢ = oIt is time, A is a linear (unbounded)
operator and K is a nonlinear operator dependent analytically on the vector v & X and
on the numerical parameter §= yp — 7y, near the point v =0, § = 0

o o
K@,8=2 2 Knt™", Kin=—B: Ko=0 (22
m=1n=_0

We assume that Yo denotes the critical value of the parameter y and that the oper-
ator A has a pair of purely imaginary eigenvalues 7- i @, 5= (- We seek the nontrivial
solutions of (2,1), 2m-periodic in T ,

The Navier-Stokes equations represent one particular case of (2,1), another is given
by e, g. the equations of motion of a viscoelastic body,

When specific problems are solved, there is usually no need to construct the branch-
ing equation, the auto-oscillating mode can be sought directly in the form of a power
series, The distinctive feature of the method lies in the fact that the convergence of
the series need not be proved separately; the conditions of solvability of equations used
to determine the coefficients are identical to those of the theorems of [1], If formal
series (or even their first few terms) satisfying the equations in question can be construc-
ted, they will automatically be found to be convergent, Let us consider the case of
Theorem 1.4 of [1], We assume for definiteness that the auto-oscillations appear when
8 > 0. Setting § = &2, we seek ® solution of (2,1) in the form of series (*)

k k
v(v) = D v (1), o= D ek (2.3)
k=1 k=0

Inserting these series into (2,1) and equating the coefficients of like powers of € in
both parts of the equation, we arrive at the following sequence of equations for the
unknown 2m-periodic functions v, and numbers w:

*) It is already clear that ,,,, = 0; they were retained in (2,1) for the sake of greater
symmetry in the formulas that follow,
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0o 22 4 Av, = 0 (2.4)
dvz A dv1 K 2 2 5
m°dr+ z—_w1g;+ 20V1 (2.9)
dvs dvs dv: B K..° K
+ Avg= — 0, - A B R Lo + Kpo® (v1, Us) + Ky (vy, vy, vy)
(2.6)
Kp° (01, Vg) = Koo (v1, 0y) + Koo (v, vy)
For p=2,3,.. we have
d p—1 d
o — = - T Avy, = — Z 0 vp_k
K1
> Bw, - > Kon (Vs -+ e Oim) =Tp (2.7)
2n+-m==p irt. iy ten=p
(n=0,1,..; Tpdgre s lpm=12,..))

Let us solve these equations one 4fter the other, It was shown in [1] that by displacing

the time T — T 4 & we can obtain the vector function vj in the following form
PA.d

ve= g+ o (0 >0) (e (5), D)eidr =0 2.9)
0
P = @ei* |- p¥eiv, Ag + iwgp =0, A*D — iny®d = 0
(p, ©) =1
with the unknown constants o, (K = 1, 2, .. .).
Equation (2, 4) yields
vy (1) = oy (7) (2.9)
Condition of solvability of the equation
g 2L | Au =1 (2.10)
with 2n -periodic functions f and u has the form
2n
{ (7(v), @)etdr =0 (2.11)
9
with the additional condition
{w), 0)emdr=0 (2.12)

0
We note that the 21 -periodic solution u of (2,10) is unique, The operator R is found
by setting u = Rf.
Applying (2,12) to Eq. (2, 5) we find that 0, = 0. The constant @, remains unknown,
while the vector function u, can be found from (2, 8) (with & = 2) and

du
Up = G;2Uy, g ;t‘zro + Augy = Koy (, ¥) (2.13)
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We can write the vector function u,, in the form
Ugy = 2, -{-Z 262“ + zz*e—ait

2y = A7 Ky’ (9, 9*), 25 = (A 4 2i@I)™ Kpo (9, P) (2.14)

The condition of solvability of (2, 6) has the form

— 2mi@,0; + Zogo%i® + L1100 = 0
an

8oso = S (Kosoh® + Kao (, Uao), @) e""dT (2.19)
0
8110 = — 21 (B,p, D)
and this yields o, and ®g

R l/. — M 2.16
Gy = [_ %%%ZJ ’ 2nw, = Im g3 — Re g0 Fg go%o ( )

If Re gy;0Regg30 << 0, the cycle branches out for § > 0.If on the other hand the above
quantity is positive, the cycle appears when § << ( [1} The right hand side of (2, 6)

can be written as
s = 20105K 55 (Y, P) + g4
d ° y
gy = — ‘Dsald_;p — 0By + 03 [Kye® (1, ugg) + Kgp¥®) (2.17)

and the vector function ¢z can be assumed known, In accordance with (2,17) and (2,13)
we can write the vector function U3 in the form

ua = 20&10021120 + w3, Wg = an (2'18’

The condition of solvability of (2,7) with p = 4 yields @; and &, . To obtain them
we write f; in the form

d
fa= Gaofg + @ KogP® 4 20,05 K51 — 0905 d_l,,l: + fao (2.19)
d °
fo=— d_ij — By + 30,® [Kyo® (Usge, ) + K309l (2.20)
du; o
fao = — 050, —5‘? — ay®Byuigg + 0,.K50° (P, wy) + 0°K g0 (g0 Usg) +
+ K19 + 0, Kgo® (, ¥, Ugg) + 01 K gy (2.21)

We call the trigonometric polynomial even (odd) if it contains the harmonics of
exp 2ni v (exp (2n + 1)it) only.

Note that wy is an odd trigonometric polynomial and /4, is an even one, Therefore
the insertion of 7, into the condition of solvability (2,11), with (2,15) and (2,16) ta-
ken into account, yields

g (— 20103 + 110 — 3on0 Re g”°) — 2mtiay0, = 0 (2.22)

Re 8o3o
Since Re gy30 == 0, from (2.22) follows ¢y = ©; = (. Thus we have

v (1) = e + eatiug + O (€°), o= o, + 0e® + O (¢*) (2.23)
Let us describe the procedure of computing the consecutive terms of the expansion
(2.23), Assume
Ups Ugy + °up—2; Cyy gy v v e a’p—a; W1, @, . .. cop_2 (p > 5)

to be already known, Then fp-1 can be written in the form
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fp1 = 20,05 Ko $® + Apy (2.24)

where the vector function hp.1 can be assumed known, In accordance with (2,24), we

obtain Upy = 2040p_gliyg + Wp-1, Wpy = Rhpy (2.25)
Inserting (2,25) into (2, 7), the latter defining fp, we armrive at
fp = — 0p 0, dP/AT 4 ay_ofy + 20,051 Kygh? + fpo (2.26)

containing the known vector function fpo. Inserting f, into the condition (2,11) of
solvability of (2.7), we obtain

. , R
— 27 0py + Oy y <— 27ity +g110 — 3Zoz0 f%f,%j) =Tp

rp = | (fpos @) eivdr 2.27)
0

which readily yields @5 and gipp. The formula (2, 25) now gives u,_, The process
can be continued in the same manner, We note that the vector function up is an even
trigonometric polynomial if p is even, and odd if p is odd, This can easily be shown
by induction with respect to p , Furthermore, the proof of Theorem 2,2 of [1] implies
that @,, =0 (n = 1,2, ...).
On some occasions different power series expansions of the auto-oscillations are found
useful, Let us seek a solution of (2,1) in the form
2r
v(t) = wp(0) +u(), § @@ ®)etdr=0 (2.28)

0

and the vector function u as well as the numerical parameters ® and § in the form
of series in powers of the amplitude o

0 =0+ Oy e, 8= D) 8,  u= D) dFuwy (2.29)
k=1 k=1 k=2

Expansions (2, 29) are more general than (2, 3), They remain valid under the condit-
ions of Theorems 2,1 and 3,1 of [1] (see the proof of Theorem 2,1) and are of partic-
ular interest especially in the case when the equation contains a certain complementary
parameter 1} and, when at certain values of this parameter, the radicand in (2,186)
changes its sign and the expansions (2, 3) no longer hold, We note that similar amplit-
ude expansions were proposed by Landau {4] ([5] deals with the proof of the Landau
method),

Inserting (2,28) and (2,29) into (2,1), we obtain

v (1) = ap + a’uy + O (&%)

- Re go3o .
0= — Re g1o u? -+ 0 (o) (2.30)

. Im guno
® = @p -+ pya® + 0 (a?), py = Im go5 — Re gogo Rogin

3, Stability of the fundamental mode and the auto-oscillation,



Investigation of auto-oscillations of a continuous medium 431

We can use the perturbation method to investigate the stability of the branched-out
auto-oscillating mode for the values of the parameter ¥ close to the critical one, In
fact, the comresponding linearized equation contains a small parameter = y — 7,
(or its fractional power), When§ = (), this equation becomes a linearized equation
corresponding to the fundamental stationary mode with 9 = 7,. If this mode shows
gross instability (the stability spectrum containing the points of the right semiplane},it
remains such when 8 are small ( and so does the branched-out cycle), For this reason
we only need to consider the case when all the points of the stability spectrum of the
fundamental mode with the exception of in w, (n = 0, -1, .. .)lie, fory = v, ,
within the left semiplane, In the end we find that it suffices to learn in which direction
the excepted points are displaced as a result of a perturbation, In fact, it is enough to
consider that eigenvalue ¢, which becomes o, = Owhen § = (. The remaining eig-
envalues have the form ¢ 4 inw,. The eigenvalue 0, = ( is double, and it usually
splits under the action of a perturbation into two simple ones, One of them is necessa~
rily zero and is always found in the stability spectrum of the auto-oscillation, We there-
fore turn our attention to the value of ¢ different from zero, We find that if Re ¢ <<
0, the cycle is stable, if Re 6 >0 the cycle is unstable,

We must remember that the perturbation theory can describe, generally speaking,
only the behavior of compact fragments of the spectrum, and not of the whole spectrum,
For this reason an a priori estimate is needed, uniform over small § of the real parts
of those points of the stability spectrum which lie in the right semiplane, Otherwise the
assertion that no eigenvalues appear in the right semiplane at a distance from the ima-
ginary axis would not be possible to be made, Of course, instability can be proved
without an a priori estimate, but the latter is necessary if stability is to be shown
conclusively, Such difficulties are however not encountered in the problems which are
dealt with in the present paper; the monodromy operator is completely continuous and
analytically depends on e, and only a finite number of multiplicators can be found out-
side the unit circle, Justification for the use of the linearizing procedure in the problem
on stability of periodic motions of a fluid is given in [8, 7],

We restrict ourselves to the case of the Theorems 2,1 and 3,2 of [1], The method
however can also be used under the conditions of the remaining theorems of [1], We
assume for definiteness that the auto-oscillations appear when § > 0.

Let us linearize (2.1) in the neighborhood of the periodic solution ¥ (T). Seeking the
solutions of the form e°w (t), where w (1) is 2 2mn-periodic vector function, we arr-
ive at the following spectral problem

mj—f—{—sw—{—Aw:KU'(v,é)w (3.1)

Its right-hand side contains the Frechet derivative with respect to v of the operator K.
Using the expansions (2, 3), we can reduce (3,1) to the form

o0 oo
dw dw .
@ 7 + ow + Aw + X efwy == D eF R () w (3.2)
k=2 k=1
where Ry, Rg., .-+ are linear operators, In particular, we have

Rw = K;O (v, w), Baw = K;O (Vg W) + Ks (vy, vy, w) — By (3.3)
Equations (3,1) or (3,2) are obviously satisfied if we set ¢ = 0 and w = dv / dt. We
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seek the nonzero eigenvalue ¢ vanishing when e —» (),and the corresponding eigenvec-

tor w in the following form: = b
G = 2 e, w= D ePwy, w,(t) = P (3-4)
k==1 k=0

The validity of the expansions (3,4) follows from the perturbation theory, Inserting (3, 4)
into (8, 2) and equating the coefficients of like powers of & in both sides of the equation.

we obtain dwy ‘
. ©ogr T Awy = — sy, -+ fzzf (1, wo) (3.9)
g . &g,
gz 4 AWy = — 6wy — Sty — 0y - - Rywy -+ Ry 3.8)

w4

and analogous expressions for Ws, @y, « . . The requirement that the right-hand side
of (3, 5) satisfies the condition of solvability (2,11) yields, with (3,4) and (2, 9) taken

into account, oy = 0,  wy = a8, + 20,2%" (3.7
where the constant a; is given by (2,16} and the vectors z, and z by 11

o= A7Kg (9. 9%), 5= (A + o) Kag (g, @) (3.8)
Applying the condition of solvability (2,11) to (3.6) we obtain (3.9

Oy = —iwy — (Byg, M)+ 201* (K, (9, 20) + Ko (9%.2) + Koo (95 @, 9%), D)
and, taking (2,15) and (2, 16) into account, we have
Re g, = — Y,n Re g4y, = Re (B, ) {(3.10}

The vector function w2, can be found from (3.5}, and the remaining wy and Op can
be obtained in a similar manner, Stability of the fundamental mode can be established
by just considering (3,1) with ¢ == (. Repeating the procedure given above, we obtain
the following expression for the eigenvalue ¢

o = 0,0 -+ 0 (8%, Re 0, = —Re (Byp, @) 3.10)

and consequently arrive at the following theorem,

Theorem 3,1, Letthe conditions of Theorem 3.1 (or 2,1) of [1] hold, Then the
fundamental mode is asymptotically stable for small § if 8Re (Byp, @) >> 0, and
unstable if ORe (Byq, d) < (. If the conditions of Theorem 3,2 (or 2,2) 0f f1]also
hold, then the branching-out cycle is stable when Re (B¢, 0)<C0, and unstable when
fe Bue. ©) > 0. BIBLTOGRAPHY
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